1. 硅酸盐水泥熟料矿物的水化
硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下:
1)硅酸三钙水化
硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。
3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2
图3.4.2-1 CSH及CH形貌
(1)水化硅酸钙(C-S-H凝胶)
C-S-H的化学组成是不固定的,其Ca/Si比随液相中Ca(OH)2浓度的提高而增加。当溶液中氧化钙浓度约为2~20 mol/L时,生成Ca/Si比为0.8~1.5的水化硅酸钙[称C-S-H(Ⅰ)];当液相中氧化钙浓度饱和时,则生成Ca/Si比提高到1.5~2.0的C-S-H(Ⅱ)。在常温下,水固比增加,能使C-S-H的Ca/Si比下降。同时,H/Si比也相应减少,而且比Ca/Si值都低0.5左右。因此,在正常水化的条件下,C-S-H的组成或可粗略地用CxSHx-0.5表示。多数研究者还认为C-S-H的组成随着水化进程而改变,其Ca/Si比随龄期的增长而下降,例如从水化1 d的1.9,到2、3年后可减少至1.4~1.6左右。
C-S-H呈无定形的胶体状,粒子如以球形计,直径可能小于10 μm。其结晶程度极差,而且即使经过很长时间,结晶度仍然提高不多。
水泥浆体中的C-S-H凝胶会呈现各种不同的形貌:
A. 纤维状粒子,称为Ⅰ型C-S-H,为水化初期从水泥颗粒向外辐射生长的细长条物质,长约0.5~2 μm,宽一般小于0.2 μm,通常在尖端上有分叉现象。
B. 网络状粒子,称为Ⅱ型C-S-H,呈互相联锁的网状结构,其组成单元也是一种长条形粒子,截面积与Ⅰ型相同,但每隔半μm左右就叉开,而且叉开角度相当大。由于粒子间叉枝的交结,并在交结点相互生长,从而形成连续的三维空间网。
C. 等大粒子,称Ⅲ型C-S-H,为小而不规则、三向尺寸近乎相等的球状颗粒,也有扁平碟状,一般不大于0.3 μm。通常在水泥水化到一定程度后才明显出现,在硬化浆体中常占相当数量。
D. 内部产物,称Ⅳ型C-S-H,即处于水泥粒子原始周界以内的C-S-H,外观似斑驳状。通常认为是通过局部化学反应的产物,比较致密,具有规整的孔隙。其曲型的颗粒或孔的尺寸不超过0.1 μm左右。
C-S-H除具有上述的四种基本形态外,还可能在不同场合观察到呈薄片状、麦管状、珊瑚状以及花朵状等各种形貌。
(2)氢氧化钙(CH)
氢氧化钙具有固定的化学组成,纯度较高,仅可能含有极少量的Si、Fe和S。结晶良好,属三方晶系,具层状结构,由彼此联结的Ca(OH)2八面体组成。结构层内为离子键,结合较强;而结构层之间则为分子键,层间联系较弱,可能为硬化水泥浆体受力时的一个裂缝策源地。
当水化过程到达加速期后,较多的Ca(OH)2晶体即在充水空间中成核结晶析出。其特点是只在现有的空间中生长,如果遇到阻挡,则会朝另外方向转向长大,甚至会绕过水化中的水泥颗粒而将其完全包裹起来,从而使其实际所占的体积有所增加。在水化初期,Ca(OH)2常呈薄的六方板状,宽约几十微米,用普通光学显微镜即可清晰分辨;在浆体孔隙内生长的Ca(OH)2晶体,有时长得很大,甚至肉眼可见。随后,长大变厚成叠片状。
此外,在水泥浆体中还有部分Ca(OH)2会以无定形或隐晶质的状态存在。在水灰比过低的条件下,Ca(OH)2的结晶程度相应有所降低。
2)硅酸二钙的水化
β-C2S的水化与C3S相似,只不过水化速度慢而已。
2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2
所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。
3)铝酸三钙的水化
铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。
在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。
4)铁相固溶体的水化
水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。
2. 硅酸盐水泥的凝结硬化
硅酸盐水泥水化初期,水化产物的数量较少,水泥浆还具有良好的可塑性。随后水化产物的数量不断增加,自由水分不断减少,水化产物颗粒间逐渐接近,部分颗粒黏结在一起形成了一定的网状结构,水泥浆体失去可塑性,产生凝结。石膏对硅酸盐水泥水化起缓凝剂作用。
随着水化的进一步进行,水化产物不断生成并填充水泥颗粒的空隙。更多的水化产物颗粒间产生黏结作用使所形成的网状结构更加密实,此时水泥浆体逐步产生强度进入硬化阶段。
凝结硬化的影响因素有:水泥的熟料矿物组成及细度,水泥浆的水灰比,环境温度和湿度和龄期,以及石膏的掺量。
1)水泥的熟料矿物组成及细度
水泥熟料中各种矿物的凝结硬化特点不同,当水泥中个矿物的相对含量不同时,水泥的凝结硬化特点就不同。
水泥磨得愈细,水泥颗粒平均粒径小,比表面积大,水化时与水的接触面大,水化速度快,凝结硬化快,早期强度就高。
2)水泥浆的水灰比
水泥浆的水灰比是指水泥浆中水与水泥的质量之比。当水泥浆中加水较多时,水灰比较大,此时水泥的初期水化反应得以充分进行;但是水泥颗粒间原来被水隔开的距离较远,颗粒间相互连接形成骨架结构所需的凝结时间长,所以水泥浆凝结较慢,且空隙多,降低水泥石的强度。
3)石膏的掺量
硅酸盐水泥中加入适量的石膏会起到良好的缓凝效果,且由于钙矾石的生成,还能提高水泥石的强度。但是石膏掺量过多时,可能危害水泥石的安定性。
4)环境温度和湿度
水泥水化反应的速度与环境的温度有关,只有处于适当温度下,水泥的水化、凝结和硬化才能进行。通常,温度较高时,水泥的水化、凝结和硬化速度就较快。当环境温度低于0℃时水泥水化趋于停止,就难以凝结硬化。
水泥水化是水泥与水之间的反应,必须在水泥颗粒表面保持有足够的水分,水泥的水化、凝结硬化才能充分进行。保持水泥浆温度和湿度的措施,称水泥的养护。
5)龄期
水泥浆随着时间的延长水化物增多,内部结构就逐渐致密,一般来说,强度不断增长。