2.2.1 抗拉性能
在外力作用下,材料抵抗变形和断裂的能力称为强度。测定钢材强度的主要方法是拉伸试验,钢材受拉时,在产生应力的同时,相应地产生应变。应力和应变的关系反映出钢材地主要力学特征。从图2-3低碳钢的应力-应变关系中可看出,低碳钢从受拉到拉断,经历了四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。每个阶段的特点详见下图。
图2.2-1 低碳钢应力-应变关系示意图
拉伸性能是建筑钢材最重要的性能。通过对钢材进行抗拉试验所测的的弹性模量、屈服强度、抗拉强度和伸长率是钢材的四个重要技术性质指标。
(1) 弹性模量
钢材受力初期,应力与应变成比例地增长,应力与应变之比为常数,称为弹性模量,即E =б/ε。这个阶段的最大应力(P点对应值)称为比例极限бp。
弹性模量反映了材料受力时抵抗弹性变形的能力,即材料的刚度,它是钢材在静荷载作用下计算结构变形的一个重要指标。
(2) 弹性极限
应力超过比例极限后,应力-应变曲线略有弯曲,应力与应变不再成正比例关系,但卸去外力时,试件变形能立即消失,此阶段产生的变形是弹性变形。不产生残留塑性变形的最大应力(e点对应值)称为弹性极限бe。事实上,бp与бe相当接近。
(3) 屈服强度和条件屈服强度
当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度,用бs表示。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(б0.2)。高碳钢拉伸时的应力-应变曲线如图2-4所示。
(4) 极限强度
当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度бb。
(5) 塑性
塑性是钢材的一个重要性能指标。钢材的塑性通常用拉伸试验时的伸长率或断面收缩率来表示。
把试件断裂的两段拼起来,便可测得标距范围内的长度l1,l1减去标距长l0就是塑性变形值,此值与原长l0的比率称为伸长率δ。伸长率δ是衡量钢材塑性的指标,它的数值越大,表示钢材塑性越好。
2.2.2 冲击韧性
钢材的冲击韧性是处在简支梁状态的金属试样在冲击负荷作用下折断时冲击吸收功。钢材的冲击韧性试验是将标准弯曲试样置于冲击机的支架上,并使切槽位于受拉的一侧。
图2.2-2 冲击韧性试验图
冲击韧性实验当试验机的重摆从一定高度自由落下时,在试样中间开V型缺口,试样吸收的能量等于重摆所作的功W。若试件在缺口处的最小横截面积为A,则冲击韧性αk为:
式中αk的单位为J/cm2 。
钢材的冲击韧性越大,钢材抵抗冲击荷载的能力越强。αk值与试验温度有关。有些材料在常温时冲击韧性并不低,破坏时呈现韧性破坏特征。但当试验温度低于某值时,αk突然大幅度下降,材料无明显塑性变形而发生脆性断裂,这种性质称为钢材的冷脆性。
2.2.3 耐疲劳性
受交变荷载反复作用,钢材在应力低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏。钢材的疲劳破坏一般是由拉应力引起的,首先在局部开始形成细小断裂,随后由于微裂纹尖端的应力集中而使其逐渐扩大,直至突然发生瞬时疲劳断裂。疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故。
在一定条件下,钢材疲劳破坏的应力值随应力循环次数的增加而降低。钢材在无穷次交变荷载作用下而不至引起断裂的最大循环应力值,称为疲劳强度极限,实际测量时常以2×106次应力循环为基准。钢材的疲劳强度与很多因素有关,如组织结构、表面状态、合金成分、夹杂物和应力集中几种情况。一般来说,钢材的抗拉强度高,其疲劳极限也较高。
2.2.4 冷弯性能能
冷弯性能是指钢材在常温下承受弯曲变形的能力,以试验时的弯曲角度α和 弯心直径d为指标表示。钢材的冷弯试验是通过直径(或厚度)为a的试件,采用标准规定的弯心直径d(d = na,n为整数),弯曲到规定的角度时(180°或90°),检查弯曲处有无裂纹、断裂及起层等现象。若没有这些现象则认为冷弯性能合格。钢材冷弯时的弯曲角度越大,弯心直径越小,则表示冷弯性能越好。