1.2.1 强度
材料的力学性质指材料在外力作用下所引起的变化的性质。这些变化包括材料的变形和破坏。材料的变形指在外力的作用下,材料通过形状的改变来吸收能量。根据变形的特点,分为弹性变形和塑性变形。材料的破坏指当外力超过材料的承受极限时,材料出现断裂等丧失使用功能的变化。根据破坏形式的不同,材料可分为脆性材料和韧性材料。在外力作用下,材料抵抗破坏的能力称为强度。
根据外力作用方式的不同,材料的强度有抗压强度、抗拉强度、抗弯强度(或抗折强度)及抗剪强度等形式。材料的受力方式见下图:
图1-4 材料的受力形式
土木工程常用结构材料的强度值范围见表1-2。
表1-2 常用结构材料的强度值范围
强度的计算公式如下:
还有一个重要的相关概念是比强度,指材料强度与其表观密度之比。结构材料在土木工程中的主要作用,就是承受结构荷载,对大部分建(构)筑物来说,相当一大部分的承载能力用于承受材料本身的自重。因此,欲提高结构材料承受外荷载的能力,一方面应提高材料的强度;另一方面应减轻材料本身的自重,这就要求材料应具备轻质高强的特点。
1.2.2 弹性与塑性
材料在外力作用下产生变形,当外力去除后能完全恢复到原始形状的性质称为弹性。材料在外力作用下产生变形,当外力去除后,有一部分变形不能恢复,这种性质称为材料的塑性。弹性变形与塑性变形的区别在于,前者为可逆变形,后者为不可逆变形。
弹性变形:
塑性变形:
弹性变形的变形量与对应的应力大小成正比,其比例系数用弹性模量 E 来表示。弹性模量是衡量材料抵抗变形能力的一个指标,弹性模量愈大,材料愈不易变形,弹性模量是结构设计的重要参数。在弹性范围内,弹性模量是一不变的常数,按下式计算:
式中:σ—材料所受的应力,MPa;ε—材料在应力作用下产生的应变,无量纲。
完全的弹性材料是没有的,有的材料在受力不大的情况下,表现为弹性变形,但受力超过一定限度后,则表现为塑性变形,如钢材;有的材料在受力后,弹性变形及塑性变形都同时产生,如果取消外力,则弹性变形部分可以恢复,而塑性变形部分则不能恢复,如混凝土。
1.2.3 韧性与脆性
材料受外力作用,当外力达一定值时,材料发生突然破坏,且破坏时无明显的塑性变形,这种性质称为脆性。材料在冲击或振动荷载作用下,能吸收较大的能量,同时产生较大的变形而不破坏,这种性质称为韧性。
具有脆性性质的材料称脆性材料。脆性材料的抗压强度远大于其抗拉强度,可高达数倍甚至数十倍,脆性材料抵抗冲击载荷或振动作用的能力较差,脆性材料只适合用作承压构件。土木工程材料中大部分无机非金属材料均为脆性材料,如烧结普通砖、混凝土等。
具有韧性性质的材料称韧性材料。在建筑工程中,对于要求承受冲击载荷和有抗震要求的结构,如吊车梁、桥梁、路面等所用的材料,均应具有较高的韧性。土木工程常用的低碳钢、有色金属等都是韧性材料。
1.2.4 硬度和耐磨性
材料另一个重要的力学性能是硬度。它是指材料表面抵抗硬物压入或刻划的能力。金属材料等的硬度常用压入法测定,如布氏硬度法,是以单位压痕面积上所受的压力来表示。陶瓷等材料常用刻划法测定。一般情况下,硬度大的材料强度高、耐磨性较强,但不易加工。所以,工程中有时用硬度来间接推算材料的强度。
压入法:
刻划法:
耐磨性是材料表面抵抗磨损的能力。材料的耐磨性与材料的组成结构及强度、硬度有关。在土木工程中,道路路面、工业地面等受磨损的部位,选择材料需要考虑其耐磨性。